Média Móvel Exponencial - EMA BREAKING DOWN Média Móvel Exponencial - EMA As EMAs de 12 e 26 dias são as médias de curto prazo mais populares e são usadas para criar indicadores como a divergência de convergência média móvel (MACD) eo oscilador de preço percentual (PPO). Em geral, as EMA de 50 e 200 dias são usadas como sinais de tendências de longo prazo. Traders que empregam análise técnica encontrar médias móveis muito útil e perspicaz quando aplicado corretamente, mas criar havoc quando usado de forma inadequada ou são mal interpretados. Todas as médias móveis normalmente utilizadas na análise técnica são, pela sua própria natureza, indicadores atrasados. Conseqüentemente, as conclusões tiradas da aplicação de uma média móvel a um gráfico de mercado específico devem ser para confirmar um movimento de mercado ou para indicar sua força. Muitas vezes, quando uma linha de indicadores de média móvel fez uma alteração para refletir uma mudança significativa no mercado, o ponto ótimo de entrada no mercado já passou. Um EMA serve para aliviar este dilema em certa medida. Porque o cálculo EMA coloca mais peso sobre os dados mais recentes, ele abraça a ação de preço um pouco mais apertado e, portanto, reage mais rápido. Isto é desejável quando um EMA é usado para derivar um sinal de entrada de negociação. Interpretando a EMA Como todos os indicadores de média móvel, eles são muito mais adequados para mercados de tendências. Quando o mercado está em uma tendência de alta forte e sustentada. A linha de indicador EMA também mostrará uma tendência de alta e vice-versa para uma tendência de baixa. Um comerciante vigilante não só prestar atenção à direção da linha EMA, mas também a relação da taxa de mudança de uma barra para a próxima. Por exemplo, à medida que a ação de preço de uma forte tendência de alta começar a se nivelar e reverter, a taxa de mudança da EMA de uma barra para a próxima começará a diminuir até que a linha de indicador se aplana ea taxa de mudança seja zero. Devido ao efeito retardado, por este ponto, ou mesmo algumas barras antes, a ação do preço deve já ter invertido. Portanto, segue-se que a observação de uma diminuição consistente da taxa de variação da EMA poderia ser utilizada como um indicador que pudesse contrariar o dilema causado pelo efeito retardado das médias móveis. Usos comuns do EMA EMAs são comumente usados em conjunto com outros indicadores para confirmar movimentos significativos do mercado e para avaliar a sua validade. Para os comerciantes que negociam intraday e mercados em rápido movimento, o EMA é mais aplicável. Muitas vezes os comerciantes usam EMAs para determinar um viés de negociação. Por exemplo, se um EMA em um gráfico diário mostra uma forte tendência ascendente, uma estratégia de comerciantes intraday pode ser o comércio apenas a partir do lado longo em um gráfico intraday. Estou tentando calcular a média móvel de um sinal. O valor do sinal (um duplo) é atualizado em tempos aleatórios. Eu estou procurando uma forma eficiente de calcular a sua média ponderada em tempo sobre uma janela de tempo, em tempo real. Eu poderia fazer isso sozinho, mas é mais desafiador do que eu pensava. A maioria dos recursos que eu encontrei na internet estão calculando a média móvel do sinal periódico, mas as atualizações de minas em tempo aleatório. Alguém sabe bons recursos para que o truque é o seguinte: Você recebe atualizações em tempos aleatórios por meio de atualização void (tempo int, valor float). No entanto, você também precisa acompanhar quando uma atualização cai fora da janela de tempo, então você define um alarme que chamado no tempo N que remove a atualização anterior de ser sempre considerado novamente na computação. Se isso acontecer em tempo real, você pode solicitar que o sistema operacional faça uma chamada para um método void dropoffoldestupdate (int time) para ser chamado no momento N Se esta é uma simulação, você não pode obter ajuda do sistema operacional e você precisa Faça-o manualmente. Em uma simulação você chamaria métodos com o tempo fornecido como um argumento (que não se correlaciona com o tempo real). No entanto, uma suposição razoável é que as chamadas são garantidas de tal forma que os argumentos de tempo estão aumentando. Neste caso, você precisa manter uma lista ordenada de valores de tempo de alarme e, para cada atualização e chamada de leitura, você verifica se o argumento de tempo é maior que o cabeçalho da lista de alarmes. Enquanto é maior você faz o processamento relacionado com o alarme (solte a atualização mais antiga), remova a cabeça e verifique novamente até que todos os alarmes antes do tempo determinado sejam processados. Em seguida, faça a chamada de atualização. Até agora tenho assumido que é óbvio o que você faria para a computação real, mas vou elaborar apenas no caso. Eu suponho que você tem um método float read (tempo int) que você usa para ler os valores. O objetivo é tornar essa chamada o mais eficiente possível. Portanto, você não calcula a média móvel sempre que o método de leitura é chamado. Em vez disso, você precompute o valor a partir da última atualização ou o último alarme e ajustar esse valor por um par de operações ponto flutuante para conta para a passagem do tempo desde a última atualização. (Isto é, um número constante de operações excepto para talvez processar uma lista de alarmes acumulados). Esperemos que isso seja claro - este deve ser um algoritmo bastante simples e bastante eficiente. Otimização adicional. Um dos problemas restantes é se um grande número de atualizações acontecer dentro da janela de tempo, então há um longo tempo para que não há nem lê nem atualizações e, em seguida, uma leitura ou atualização vem junto. Neste caso, o algoritmo acima será ineficiente na atualização incremental do valor para cada uma das atualizações que está caindo. Isso não é necessário porque só nos preocupamos com a última atualização além da janela de tempo, por isso, se houver uma maneira de descartar eficientemente todas as atualizações antigas, isso ajudaria. Para fazer isso, podemos modificar o algoritmo para fazer uma busca binária de atualizações para encontrar a atualização mais recente antes da janela de tempo. Se houver relativamente poucas atualizações que precisam ser descartadas, então um pode atualizar incrementalmente o valor para cada atualização descartada. Mas se houver muitas atualizações que precisam ser descartadas, então um pode recalcular o valor do zero após deixar as atualizações antigas. Apêndice sobre Computação Incremental: Eu deveria esclarecer o que eu quero dizer por computação incremental acima na sentença tweak este valor por um par de operações de ponto flutuante para explicar a passagem do tempo desde a última atualização. Cálculo inicial não incremental: então iterar sobre datas relevantes por ordem crescente de tempo: movendo-se (sum lastupdate timesincelastupdate) windowlength. Agora, se exatamente uma atualização cai da janela, mas nenhuma nova atualização chegar, ajuste a soma como: (note que é priorupdate que tem seu timestamp modificado para iniciar o último início da janela). E se exatamente uma atualização entra na janela, mas nenhuma nova atualização cai, ajuste a soma como: Como deve ser óbvio, este é um esboço aproximado, mas espero que ele mostra como você pode manter a média de tal forma que é O (1) operações por atualização Sobre uma base amortizada. Mas observe otimização adicional no parágrafo anterior. Observe também as questões de estabilidade mencionadas em uma resposta mais antiga, o que significa que os erros de ponto flutuante podem se acumular em um grande número dessas operações incrementais, de modo que há uma divergência em relação ao resultado da computação completa que é significativa para a aplicação. Se uma aproximação é OK e há um tempo mínimo entre as amostras, você pode tentar super-amostragem. Tenha uma matriz que represente intervalos de tempo uniformemente espaçados que são menores do que o mínimo e, em cada período de tempo, armazene a amostra mais recente que foi recebida. Quanto mais curto o intervalo, mais próxima a média será do valor verdadeiro. O período não deve ser maior do que a metade do mínimo ou há uma chance de faltar uma amostra. Respondeu Dec 15 11 at 18:12 respondeu Dec 15 11 at 22:38 Obrigado pela resposta. Uma melhoria que seria necessário para realmente quotcachequot o valor da média total para que don39t loop o tempo todo. Além disso, pode ser um ponto menor, mas não seria mais eficiente usar um deque ou uma lista para armazenar o valor, uma vez que assumimos que a atualização virá na ordem correta. A inserção seria mais rápida do que no mapa. Ndash Arthur 16 dez às 8:55 Sim, você poderia armazenar em cache o valor de soma. Subtraia os valores das amostras que você apaga, adicione os valores das amostras inseridas. Além disso, sim, um dequeltpairltSample, Dategtgt pode ser mais eficiente. Eu escolhi o mapa para a legibilidade, ea facilidade de invocar map :: upperbound. Como sempre, escreva o código correto primeiro, depois perfil e mude as mudanças incrementais. Ndash Rob 16 de dezembro às 15:00 Nota: Aparentemente esta não é a maneira de abordar isso. Deixando aqui para referência sobre o que está errado com esta abordagem. Verifique os comentários. UPDATED - com base no comentário Olis. Não tenho certeza sobre a instabilidade de que ele está falando embora. Use um mapa ordenado de tempos de chegada contra valores. Após a chegada de um valor adicionar a hora de chegada para o mapa ordenado, juntamente com o seu valor e atualizar a média móvel. Aviso este é pseudo-código: Lá. Não totalmente desenvolvido, mas você começa a idéia. Coisas a observar. Como eu disse o acima é pseudo código. Você precisará escolher um mapa apropriado. Não remova os pares à medida que você iterar através como você irá invalidar o iterador e terá que começar novamente. Veja Olis comentário abaixo também. Este trabalho não funciona: ele não leva em conta que proporção do comprimento da janela de cada valor existe para. Além disso, essa abordagem de adição e subtração é apenas estável para tipos inteiros, e não para flutuadores. Ndash Oliver Charlesworth Dec 15 11 em 12:29 OliCharlesworth - desculpe eu perdi alguns pontos-chave na descrição (duplo e ponderada). Eu vou atualizar. Obrigado. Ndash Dennis Dec 15 11 at 12:33 A ponderação de tempo é ainda outro problema. Mas isso não é o que eu estou falando. Eu estava me referindo ao fato de que quando um novo valor entra pela primeira vez na janela de tempo, sua contribuição para a média é mínima. Sua contribuição continua a aumentar até que um novo valor entre. Eu tenho uma matriz de valores como este: A matriz acima é simplificada, estou coletando um valor por milissegundo no meu código real e eu preciso processar a saída em um algoritmo que eu escrevi para encontrar o Máximo antes de um ponto no tempo. Minha lógica falha porque no meu exemplo acima, 0.36 é o pico real, mas meu algoritmo olharia para trás e verá o último número 0.25 como o pico, pois há uma diminuição para 0.24 antes dele. O objetivo é tomar esses valores e aplicar um algoritmo para eles que irá suavizar-los um pouco para que eu tenha mais valores lineares. (Ou seja: Id como meus resultados para ser curvy, não jaggedy) Ive foi dito para aplicar um filtro exponencial de média móvel para os meus valores. Como posso fazer isso É muito difícil para mim ler equações matemáticas, eu lidar muito melhor com o código. Como processar valores em minha matriz, aplicando um cálculo exponencial de média móvel para igualá-los out perguntou Feb 8 12 at 20:27 Para calcular uma média móvel exponencial. Você precisa manter algum estado ao redor e você precisa de um parâmetro de ajuste. Isso requer uma pequena classe (supondo que você está usando o Java 5 ou posterior): Instantiate com o parâmetro de decadência desejado (pode ter ajuste deve estar entre 0 e 1) e use a média () para filtrar. Ao ler uma página sobre alguma recorrência matemática, tudo o que você realmente precisa saber ao transformá-lo em código é que os matemáticos gostam de escrever índices em matrizes e seqüências com subscritos. (Eles têm algumas outras notações também, o que não ajuda.) No entanto, o EMA é bastante simples, como você só precisa se lembrar de um antigo valor não arrays estado complicado necessário. Respondeu 8 fevereiro às 20:42 TKKocheran: Muito bonito. Não é bom quando as coisas podem ser simples (se começar com uma nova seqüência, obter um novo averager.) Observe que os primeiros termos na seqüência média saltarão um pouco devido a efeitos de limite, mas você obtém aqueles com outras médias móveis também. No entanto, uma boa vantagem é que você pode envolver a lógica de média móvel para o averager e experimentar sem perturbar o resto do seu programa demais. Ndash Donal Fellows Feb 9 12 em 0:06 Estou tendo dificuldade em entender suas perguntas, mas vou tentar responder de qualquer maneira. 1) Se o seu algoritmo encontrado 0,25 em vez de 0,36, então ele está errado. É errado porque assume um aumento ou uma diminuição monotônica (que está sempre subindo ou sempre indo para baixo). A menos que você média TODOS os seus dados, seus pontos de dados --- como você apresentá-los --- são não-lineares. Se você realmente deseja encontrar o valor máximo entre dois pontos no tempo, corte sua matriz de tmin para tmax e localize o máximo desse subarray. 2) Agora, o conceito de médias móveis é muito simples: imagine que eu tenho a seguinte lista: 1.4, 1.5, 1.4, 1.5, 1.5. Eu posso suavizar isto tomando a média de dois números: 1.45, 1.45, 1.45, 1.5. Observe que o primeiro número é a média de 1,5 e 1,4 (segundo e primeiro números) a segunda (nova lista) é a média de 1,4 e 1,5 (terceira e segunda lista antiga) a terceira (nova lista) a média de 1,5 e 1,4 (Quarto e terceiro), e assim por diante. Eu poderia ter feito o período três ou quatro, ou n. Observe como os dados são muito mais suaves. Uma boa maneira de ver as médias móveis no trabalho é ir ao Google Finance, selecionar um estoque (tente Tesla Motors bastante volátil (TSLA)) e clique em technicals na parte inferior do gráfico. Selecione Média Móvel com um determinado período e Média Mínima exponencial para comparar suas diferenças. A média móvel exponencial é apenas mais uma elaboração disto, mas pondera os dados mais antigos menos do que os novos dados, isto é uma forma de influenciar a suavização em direção às costas. Por favor, leia a entrada da Wikipedia. Então, isso é mais um comentário do que uma resposta, mas a pequena caixa de comentários era apenas pequena. Boa sorte. Se você está tendo problemas com a matemática, você poderia ir com uma média móvel simples, em vez de exponencial. Então a saída que você obtém seria o último x termos dividido por x. Pseudocódigo não testado: Note que você precisará manipular as partes inicial e final dos dados, uma vez que claramente você não consegue média dos últimos 5 termos quando você está no seu 2º ponto de dados. Além disso, há maneiras mais eficientes de calcular essa média móvel (soma sum - mais antigo mais recente), mas isso é para obter o conceito do que está acontecendo em toda. Respondeu 8 fevereiro às 20:41
No comments:
Post a Comment